63 research outputs found

    Joint Segmentation and Groupwise Registration of Cardiac Perfusion Images Using Temporal Information

    Get PDF
    We propose a joint segmentation and groupwise registration method for dynamic cardiac perfusion images that uses temporal information. The nature of perfusion images makes groupwise registration especially attractive as the temporal information from the entire image sequence can be used. Registration aims to maximize the smoothness of the intensity signal while segmentation minimizes a pixel's dissimilarity with other pixels having the same segmentation label. The cost function is optimized in an iterative fashion using B-splines. Tests on real patient datasets show that compared with two other methods, our method shows lower registration error and higher segmentation accuracy. This is attributed to the use of temporal information for groupwise registration and mutual complementary registration and segmentation information in one framework while other methods solve the two problems separatel

    Generalized Zero Shot Learning For Medical Image Classification

    Full text link
    In many real world medical image classification settings we do not have access to samples of all possible disease classes, while a robust system is expected to give high performance in recognizing novel test data. We propose a generalized zero shot learning (GZSL) method that uses self supervised learning (SSL) for: 1) selecting anchor vectors of different disease classes; and 2) training a feature generator. Our approach does not require class attribute vectors which are available for natural images but not for medical images. SSL ensures that the anchor vectors are representative of each class. SSL is also used to generate synthetic features of unseen classes. Using a simpler architecture, our method matches a state of the art SSL based GZSL method for natural images and outperforms all methods for medical images. Our method is adaptable enough to accommodate class attribute vectors when they are available for natural images

    Skull Stripping of Neonatal Brain MRI: Using Prior Shape Information with Graph Cuts

    Get PDF
    In this paper, we propose a novel technique for skull stripping of infant (neonatal) brain magnetic resonance images using prior shape information within a graph cut framework. Skull stripping plays an important role in brain image analysis and is a major challenge for neonatal brain images. Popular methods like the brain surface extractor (BSE) and brain extraction tool (BET) do not produce satisfactory results for neonatal images due to poor tissue contrast, weak boundaries between brain and non-brain regions, and low spatial resolution. Inclusion of prior shape information helps in accurate identification of brain and non-brain tissues. Prior shape information is obtained from a set of labeled training images. The probability of a pixel belonging to the brain is obtained from the prior shape mask and included in the penalty term of the cost function. An extra smoothness term is based on gradient information that helps identify the weak boundaries between the brain and non-brain region. Experimental results on real neonatal brain images show that compared to BET, BSE, and other methods, our method achieves superior segmentation performance for neonatal brain images and comparable performance for adult brain image

    Retinal Image Quality Classification Using Neurobiological Models of the Human Visual System

    Get PDF
    Retinal image quality assessment (IQA) algorithms use different hand crafted features without considering the important role of the human visual system (HVS). We solve the IQA problem using the principles behind the working of the HVS. Unsupervised information from local saliency maps and supervised information from trained convolutional neural networks (CNNs) are combined to make a final decision on image quality. A novel algorithm is proposed that calculates saliency values for every image pixel at multiple scales to capture global and local image information. This extracts generalized image information in an unsupervised manner while CNNs provide a principled approach to feature learning without the need to define hand-crafted features. The individual classification decisions are fused by weighting them according to their confidence scores. Experimental results on real datasets demonstrate the superior performance of our proposed algorithm over competing methods

    Skull Stripping of Neonatal Brain MRI: Using Prior Shape Information with Graph Cuts

    Get PDF
    ISSN:0897-1889ISSN:1618-727
    • …
    corecore